English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/146462
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations

AutorChen, S.; Baronio, F.; Soto Crespo, J. M. ; Liu, Y.; Grelu, P.
Fecha de publicación7-jun-2016
EditorAmerican Physical Society
CitaciónPhysical Review E 93: 062202 (2016)
ResumenWe shed light on the fundamental form of the Peregrine soliton as well as on its frequency chirping property by virtue of a pertinent cubic-quintic nonlinear Schrödinger equation. An exact generic Peregrine soliton solution is obtained via a simple gauge transformation, which unifies the recently-most-studied fundamental rogue-wave species. We discover that this type of Peregrine soliton, viable for both the focusing and defocusing Kerr nonlinearities, could exhibit an extra doubly localized chirp while keeping the characteristic intensity features of the original Peregrine soliton, hence the term chirped Peregrine soliton. The existence of chirped Peregrine solitons in a self-defocusing nonlinear medium may be attributed to the presence of self-steepening effect when the latter is not balanced out by the third-order dispersion. We numerically confirm the robustness of such chirped Peregrine solitons in spite of the onset of modulation instability. ©2016 American Physical Society
Descripción8 págs.; 6 figs.
Versión del editorhttps://doi.org/10.1103/PhysRevE.93.062202
URIhttp://hdl.handle.net/10261/146462
DOI10.1103/PhysRevE.93.062202
Identificadoresdoi: 10.1103/PhysRevE.93.062202
issn: 2470-0053
Aparece en las colecciones: (CFMAC-IO) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Chirped.pdf1,79 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.