English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/146268
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


A mini outburst from the nightside of comet 67P/Churyumov-Gerasimenko observed by the OSIRIS camera on Rosetta

AuthorsKnollenberg, J.; Rodrigo, R.; Gutiérrez, Pedro J. ; Lara, Luisa María ; López-Moreno, José Juan
KeywordsComets: general
Methods: numerical
Comets: individual: 67P/Churyumov-Gerasimenko
Issue Date2016
PublisherEDP Sciences
CitationAstronomy and Astrophysics 596: A89 (2016)
AbstractContext. On 12 March 2015 the OSIRIS WAC camera onboard the ESA Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko observed a small outburst originating from the Imhotep region at the foot of the big lobe of the comet. These measurements are unique since it was the first time that the initial phase of a transient outburst event could be directly observed. Aims. We investigate the evolution of the dust jet in order to derive clues about the outburst source mechanism and the ejected dust particles, in particular the dust mass, dust-to-gas ratio and the particle size distribution. Methods. Analysis of the images and of the observation geometry using comet shape models in combination with gasdynamic modeling of the transient dust jet were the main tools used in this study. Synthetic images were computed for comparison with the observations. Results. Analysis of the geometry revealed that the source region was not illuminated until 1.5 h after the event implying true nightside activity was observed. The outburst lasted for less than one hour and the average dust production rate during the initial four minutes was of the order of 1 kg/s. During this time the outburst dust production rate was approximately constant, no sign for an initial explosion could be detected. For dust grains between 0.01-1 mm a power law size distribution characterized by an index of about 2.6 provides the best fit to the observed radiance profiles. The dust-to-gas ratio of the outburst jet is in the range 0.6-1.8. © 2016 ESO.
Identifiersdoi: 10.1051/0004-6361/201527744
issn: 1432-0746
Appears in Collections:(IAA) Artículos
(CAB) Artículos
Files in This Item:
File Description SizeFormat 
IAA_2016_aa27744-15.pdf3,98 MBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.