English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/14519
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Vibrational quenching of CO2(010) by collisions with O(3P) at thermal energies: A quantum-mechanical study

AutorLara Castells, María Pilar de ; Hernández, Marta I. ; Delgado Barrio, Gerardo ; Villarreal, Pablo ; López-Puertas, Manuel
Palabras claveCarbon compounds
Oxygen
Atom-molecule collisions
Translational states
Vibrational states
Rotational-vibrational energy transfer
Ab initio calculations
Potential energy surfaces
Spin-orbit interactions
Upper atmosphere
Planetary atmospheres
Venus
Mars
[PACS] Rotational and vibrational energy transfer (atoms and molecules)
[PACS] Vibrational analysis (molecular spectra)
[PACS] Molecular rotation, vibration, and vibration-rotation constants
[PACS] Ab initio calculations (atoms and molecules)
Fecha de publicación24-abr-2006
EditorAmerican Institute of Physics
CitaciónJournal of Chemical Physics 124(16): 164302 (2006)
ResumenThe CO2(010)–O(3P) vibrational energy transfer (VET) efficiency is a key input to aeronomical models of the energy budget of the upper atmospheres of Earth, Venus, and Mars. This work addresses the physical mechanisms responsible for the high efficiency of the VET process at the thermal energies existing in the terrestrial upper atmosphere (150 K ≤ T ≤ 550 K). We present a quantum-mechanical study of the process within a reduced-dimensionality approach. In this model, all the particles remain along a plane and the O(3P) atom collides along the C(2v) symmetry axis of CO2, which can present bending oscillations around the linear arrangement, while the stretching C–O coordinates are kept fixed at their equilibrium values. Two kinds of scattering calculations are performed on high-quality ab initio potential energy surfaces (PESs). In the first approach, the calculations are carried out separately for each one of the three PESs correlating to O(3P). In the second approach, nonadiabatic effects induced by spin-orbit couplings (SOC) are also accounted for. The results presented here provide an explanation to some of the questions raised by the experiments and aeronomical observations. At thermal energies, nonadiabatic transitions induced by SOC play a key role in causing large VET efficiencies, the process being highly sensitive to the initial fine-structure level of oxygen. At higher energies, the two above-mentioned approaches tend to coincide towards an impulsive Landau-Teller mechanism of the vibrational to translational (V-T) energy transfer.
Descripción10 pages, 6 figures, 1 table, 1 appendix.-- PACS nrs.: 34.50.Ez; 33.20.Tp; 33.15.Mt; 31.15.Ar.
Versión del editorhttp://dx.doi.org/10.1063/1.2189860
URIhttp://hdl.handle.net/10261/14519
DOI10.1063/1.2189860
ISSN0021-9606
Aparece en las colecciones: (CFMAC-IFF) Artículos
(IAA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Vibrational_quenching_JChemPhys_2006.pdf245,99 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.