English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/144434
Título

Automatic discrimination of grapevine (Vitis vinifera L.) clones using leaf hyperspectral imaging and partial least squares

AutorFernandes, Armando M.; Melo-Pinto, Pedro; Millán Prior, Borja ; Tardáguila, Javier ; Diago, Maria P.
Fecha de publicaciónabr-2015
EditorCambridge University Press
CitaciónJournal of Agricultural Science 153(3): 455-465 (2015)
Resumen© Cambridge University Press 2014. A worldwide innovative method to discriminate grapevine clones is presented. It is an alternative to ampelography, isozyme and DNA analysis. The spectra and their first and second derivatives of 201 bands in the visible and near-infrared wavelength range between 634 and 759 nm were used as inputs to a classifier created using partial least squares. The spectra were acquired in the laboratory for the adaxial side of the apical part of the main lobe of fully hydrated grapevine leaves. The classifier created allowed the separation of 100 leaves of the Cabernet Sauvignon (Vitis vinifera L.) variety into four clones, namely CS 15, CS 169, CS 685 and CS R5, comprising 25 leaves each. The percentages of leaves correctly classified for these clones were 98·2, 99·2, 100 and 97·8%, respectively, when the classifier input was the second derivative of the normalized spectra. These percentages were determined by Monte-Carlo cross-validation. With the new method proposed, each leaf of a given variety can be classified in a few seconds according to its clone in an environmentally friendly way.
Versión del editorhttp://doi.org/10.1017/S0021859614000252
URIhttp://hdl.handle.net/10261/144434
DOI10.1017/S0021859614000252
Identificadorese-issn: 1469-5146
issn: 0021-8596
Aparece en las colecciones: (ICVV) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.