English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/144428
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Assessment of cluster yield components by image analysis

AuthorsDiago, Maria P. ; Tardáguila, Javier ; Aleixos, Nuria; Millán Prior, Borja ; Prats-Montalbán, J. M.; Cubero, Sergio; Blasco, José
KeywordsBerry number per cluster
LIP–Canny
Hough Transform
Berry weight
Cluster weight
Vitis vinifera L
Issue DateApr-2015
PublisherJohn Wiley & Sons
CitationJournal of the Science of Food and Agriculture 95(6): 1274-1282 (2015)
Abstract[Background] Berry weight, berry number and cluster weight are key parameters for yield estimation for wine and tablegrape industry. Current yield prediction methods are destructive, labour-demanding and time-consuming. In this work, a new methodology, based on image analysis was developed to determine cluster yield components in a fast and inexpensive way.
[Results] Clusters of seven different red varieties of grapevine (Vitis vinifera L.) were photographed under laboratory conditions and their cluster yield components manually determined after image acquisition. Two algorithms based on the Canny and the logarithmic image processing approaches were tested to find the contours of the berries in the images prior to berry detection performed by means of the Hough Transform. Results were obtained in two ways: by analysing either a single image of the cluster or using four images per cluster from different orientations. The best results (R2 between 69% and 95% in berry detection and between 65% and 97% in cluster weight estimation) were achieved using four images and the Canny algorithm. The model's capability based on image analysis to predict berry weight was 84%.
[Conclusion] The new and low-cost methodology presented here enabled the assessment of cluster yield components, saving time and providing inexpensive information in comparison with current manual methods. © 2014 Society of Chemical Industry
Publisher version (URL)http://doi.org/10.1002/jsfa.6819
URIhttp://hdl.handle.net/10261/144428
DOI10.1002/jsfa.6819
Identifiersissn: 1097-0010
e-issn: 0022-5142
Appears in Collections:(ICVV) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.