English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/14397
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Comparing population distributions from bin-aggregated sample data: An application to historical height data from France

AutorDuclos, Jean-Yves; Leblanc, Josée; Sahn, David
Palabras claveHealth
Health inequality
Aggregate data
19th Century
Welfare
France
Fecha de publicación20-abr-2009
SerieUFAE and IAE Working Papers ; 771.09
ResumenThis paper develops a methodology to estimate the entire population distributions from bin-aggregated sample data. We do this through the estimation of the parameters of mixtures of distributions that allow for maximal parametric flexibility. The statistical approach we develop enables comparisons of the full distributions of height data from potential army conscripts across France's 88 departments for most of the nineteenth century. These comparisons are made by testing for differences-of-means stochastic dominance. Corrections for possible measurement errors are also devised by taking advantage of the richness of the data sets. Our methodology is of interest to researchers working on historical as well as contemporary bin-aggregated or histogram-type data, something that is still widely done since much of the information that is publicly available is in that form, often due to restrictions due to political sensitivity and/or confidentiality concerns.
Descripción43 pages, 11 figures, 4 tables.-- JEL Classification Numbers: C14, C81, D3, D63, I1, I3, N3.
Versión del editorhttp://pareto.uab.es/wp/2009/77109.pdf
URIhttp://hdl.handle.net/10261/14397
Aparece en las colecciones: (IAE) Informes y documentos de trabajo
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
77109.pdf802,66 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.