Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/143652
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorMesa-Torres, Noel-
dc.contributor.authorCalvo, Ana C.-
dc.contributor.authorOppici, Elisa-
dc.contributor.authorTitelbaum, Nicholas-
dc.contributor.authorMontioli, Riccardo-
dc.contributor.authorMiranda-Vizuete, Antonio-
dc.contributor.authorCellini, Barbara-
dc.contributor.authorSalido, Eduardo-
dc.contributor.authorPey, Ángel L.-
dc.date.accessioned2017-02-08T13:13:36Z-
dc.date.available2017-02-08T13:13:36Z-
dc.date.issued2016-09-
dc.identifierissn: 1878-1454-
dc.identifier.citationBiochimica et Biophysica Acta - Proteins and Proteomics 1864(9): 1195- 1205 (2016)-
dc.identifier.urihttp://hdl.handle.net/10261/143652-
dc.description.abstractIn humans, glyoxylate is an intermediary product of metabolism, whose concentration is finely balanced. Mutations in peroxisomal alanine:glyoxylate aminotransferase (hAGT1) cause primary hyperoxaluria type 1 (PH1), which results in glyoxylate accumulation that is converted to toxic oxalate. In contrast, glyoxylate is used by the nematode Caenorhabditis elegans through a glyoxylate cycle to by-pass the decarboxylation steps of the tricarboxylic acid cycle and thus contributing to energy production and gluconeogenesis from stored lipids. To investigate the differences in glyoxylate metabolism between humans and C. elegans and to determine whether the nematode might be a suitable model for PH1, we have characterized here the predicted nematode ortholog of hAGT1 (AGXT-1) and compared its molecular properties with those of the human enzyme. Both enzymes form active PLP-dependent dimers with high specificity towards alanine and glyoxylate, and display similar three-dimensional structures. Interestingly, AGXT-1 shows 5-fold higher activity towards the alanine/glyoxylate pair than hAGT1. Thermal and chemical stability of AGXT-1 is lower than that of hAGT1, suggesting temperature-adaptation of the nematode enzyme linked to the lower optimal growth temperature of C. elegans. Remarkably, in vivo experiments demonstrate the mitochondrial localization of AGXT-1 in contrast to the peroxisomal compartmentalization of hAGT1. Our results support the view that the different glyoxylate metabolism in the nematode is associated with the divergent molecular properties and subcellular localization of the alanine:glyoxylate aminotransferase activity.-
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Science and Innovation (CSD2009-00088, BIO2012-34937 and SAF2011-23933), the Junta de Andalucia (P11-CTS-7187), and the Oxalosis and Hyperoxaluria Foundation (OHF2012 to B.C.). A.L.P. acknowledges a Ramon y Cajal research contract (RyC2009-04147) from the Spanish Ministry of Science and Innovation and the University of Granada. N. M-T acknowledges a FPI predoctoral fellowship from the Spanish Ministry of Science and Innovation. A.C.C. and N.T. were supported by the grant IOS-1353845 from the National Science Foundation (NSF). N.T. acknowledges the Tetelman Fellowship for International Research on the Sciences awarded by Yale University.-
dc.publisherElsevier-
dc.relation.isversionofPostprint-
dc.rightsopenAccessen_EN
dc.subjectPrimary hyperoxaluria-
dc.subjectProtein stability-
dc.subjectConformational disease-
dc.subjectSubstrate specificity-
dc.subjectEnzyme kinetics-
dc.titleCaenorhabditis elegans AGXT-1 is a mitochondrial and temperature-adapted ortholog of peroxisomal human AGT1: New insights into between-species divergence in glyoxylate metabolism-
dc.typeartículo-
dc.identifier.doi10.1016/j.bbapap.2016.05.004-
dc.relation.publisherversionhttp://doi.org/10.1016/j.bbapap.2016.05.004-
dc.date.updated2017-02-08T13:13:36Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.contributor.funderMinisterio de Ciencia e Innovación (España)-
dc.contributor.funderJunta de Andalucía-
dc.contributor.funderNational Science Foundation (US)-
dc.contributor.funderOxalosis and Hyperoxaluria Foundation-
dc.contributor.funderUniversidad de Granada-
dc.contributor.funderYale University-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100000001es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100009579es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100006393es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100005326es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011011es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Aparece en las colecciones: (IBIS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
10261_143652.pdf1,64 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

3
checked on 18-abr-2024

WEB OF SCIENCETM
Citations

3
checked on 16-feb-2024

Page view(s)

240
checked on 18-abr-2024

Download(s)

245
checked on 18-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons