English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/142829
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Labeling studies on cortical bone formation in the antlers of red deer (Cervus elaphus)

AutorGómez, Santiago; García, Andrés J. ; Luna, Salvador; Gallego, Laureano ; Landete-Castillejos, Tomás
Palabras claveAntler
Mineral apposition rate
Fecha de publicación2013
CitaciónBone 52(1): 506-515 (2013)
ResumenThe formation and mineralization process of antlers, which constitute the fastest growing bones in vertebrates, is still not fully understood. We used oxytetracycline injections to label different stages of bone formation in antlers of 14 red deer between days 28 and 156 of antler growth. Results show that initially a trabecular scaffold of woven bone is formed which largely replaces a pre-existing scaffold of mineralized cartilage. Lamellar bone is then deposited and from about day 70 onwards, primary osteons fill in the longitudinal tubes lined by the scaffold in a proximal to distal sequence. Mineral apposition rate (MAR) in early stages of primary osteon formation is very high (average 2.15 μm/d). Lower MARs were recorded for later stages of primary osteon formation (1.56 μm/d) and for the smaller secondary osteons (0.89 μm/d). Results suggest a peak in mineral demand around day 100 when the extent of mineralizing surfaces is maximal. A few secondary osteons were formed in a process of antler modeling rather than remodeling, as it occurred simultaneously with formation of primary osteons. The degree of cortical porosity reflects a reduction in MAR during later stages of osteonal growth, whereas cortical thickness is determined earlier. Injections given when the antlers were largely or completely clean from velvet produced no labels in antler bone, strongly suggesting that antlers are dead after velvet shedding. The rapidity of antler mineralization and the short lifespan of antlers make them an extraordinary model to assess the effects of chemicals impairing or promoting bone mineralization.
Versión del editorhttp://dx.doi.org/10.1016/j.bone.2012.09.015
Aparece en las colecciones: (IREC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.