English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/142660
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula

AutorTomás-Burguera, Miquel ; Vicente Serrano, Sergio M. ; Grimalt, Miquel; Beguería, Santiago
Palabras claveReference evapotranspiration
Unmeasured data
Stationary relationships
Positive trend
Fecha de publicaciónmar-2017
CitaciónTomás-Burguera M, Vicente-Serrano SM, Grimalt M, Beguería S. Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula. Agricultural Water Management 182 (1): 103–116 (2017)
ResumenThe standard approach for computing reference crop evapotranspiration (ETo) is the FAO-56 Penman-Monteith (FAO-PM) method, which requires data on air temperature, radiation, air humidity and wind speed. Unlike air temperature the other variables are less frequently available, hindering the application of FAO-PM. A lot of efforts exist to find the best method to estimate FAO-PM ETo when some variables are not available. The FAO-56 manual recommends to estimate the missing variables based on those currently observed (PM-R), or use the less demanding Hargreaves and Samani method (HS). Additionally, if the missing variables are measured at nearby stations, spatial interpolation can be used to estimate the missing data previous to applying FAO-PM (PM-IC). This paper focuses on the comparison, at the monthly time scale, of the performance of these methods to in the Iberian Peninsula. By using 53 weather stations with all data to calculate FAO-PM, data scarcity scenarios are simulated and the mentioned methods are tested (PM-R, HS, PM-IC)PM-IC yielded consistently the best results according to a number of tests. It yielded the lowest mean absolute error (MAE) at 7.56 mm/month, while PM-R yielded values of 10.15 mm/month and HS 9.36 mm/month and biased results. PM-IC was also best at reproducing the long-term variability and trends in ETo. A good and unbiased estimation of monthly ETo time series are required for irrigation planning and crop design.
Descripción14 Pags.- 6 Tabls.- 9 Figs.- Appendix (supplementary data).
Versión del editorhttp://dx.doi.org/10.1016/j.agwat.2016.12.013
Aparece en las colecciones: (IPE) Artículos
(EEAD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Acceso_Restringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.