English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/140806
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Continuous time random walks for non-local radial solute transport

AuthorsDentz, Marco ; Kang, Peter K.; Le Borgne, Tanguy
KeywordsContinuous time random walks
Multirate mass transfer
Non-local transport
Radial transport
Random walk particle tracking
Stochastic modeling
Issue Date1-Aug-2015
PublisherElsevier
CitationAdvances in Water Resources 82: 16-26 (2015)
AbstractThis study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer tests. © 2015 Elsevier Ltd.
Publisher version (URL)10.1016/j.advwatres.2015.04.005
URIhttp://hdl.handle.net/10261/140806
DOI10.1016/j.advwatres.2015.04.005
Appears in Collections:(IDAEA) Artículos
Files in This Item:
File Description SizeFormat 
ctrwradial_postprint.pdf681,25 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.