English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/140604
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

AuthorsHurier, Guillaume; Barreiro, R. Belén ; Bonavera, Laura ; Curto, Andrés ; Diego, José María ; González-Nuevo, J. ; Herranz, D. ; López-Caniego, M. ; Martínez-González, Enrique ; Toffolatti, L. ; Vielva, P. ; Planck Collaboration
KeywordsMethods: data analysis
Large-scale structure of universe
Galaxies: clusters: general
Infrared: galaxies
Issue Date2016
PublisherEDP Sciences
CitationAstronomy and Astrophysics 594: A23 (2016)
AbstractWe use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ−CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
DescriptionCosmology (including clusters of galaxies).-- et al.
Publisher version (URL)http://dx.doi.org/10.1051/0004-6361/201527418
URIhttp://hdl.handle.net/10261/140604
DOI10.1051/0004-6361/201527418
Identifiersdoi: 10.1051/0004-6361/201527418
e-issn: 1432-0746
issn: 0004-6361
Appears in Collections:(IFCA) Artículos
Files in This Item:
File Description SizeFormat 
XXIIIthermal.pdf1,18 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.