Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/140585
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Planck 2015 results. XIII. Cosmological parameters

AutorEfstathiou, G.; Barreiro, R. Belén CSIC ORCID ; Bonavera, Laura CSIC ORCID; Curto, Andrés CSIC; Diego, José María CSIC ORCID ; González-Nuevo, J. CSIC ORCID; Herranz, D. CSIC ORCID ; López-Caniego, M. CSIC ORCID; Martínez-González, Enrique CSIC ORCID ; Toffolatti, L. CSIC ORCID; Vielva, Patricio CSIC ORCID ; Rebolo López, Rafael CSIC ORCID; Planck Collaboration
Palabras claveCosmological parameters
Cosmology: observations
Cosmic background radiation
Cosmology: theory
Fecha de publicación2016
EditorEDP Sciences
CitaciónAstronomy and Astrophysics 594: A13 (2016)
ResumenThis paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted >base ΛCDM> in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H = (67.8 ± 0.9) km sMpc, a matter density parameter Ω = 0.308 ± 0.012, and a tilted scalar spectral index with n = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of \hbox{$z-{\rm re}=8.8{+1.7}-{-1.4}$}. These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find N = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value N = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to â'm < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | Ω | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r < 0.09 and disfavours inflationarymodels with a V(φ) φ potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w =-1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.
DescripciónCosmology (including clusters of galaxies).-- et al.
Versión del editorhttp://dx.doi.org/10.1051/0004-6361/201525830
URIhttp://hdl.handle.net/10261/140585
DOI10.1051/0004-6361/201525830
Identificadoresdoi: 10.1051/0004-6361/201525830
e-issn: 1432-0746
issn: 0004-6361
Aparece en las colecciones: (IFCA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
XIIICosmological.pdf13 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

6.692
checked on 16-abr-2024

WEB OF SCIENCETM
Citations

5.341
checked on 25-feb-2024

Page view(s)

727
checked on 23-abr-2024

Download(s)

224
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.