English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/140519
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Polynomial similarity transformation theory: A smooth interpolation between coupled cluster doubles and projected BCS applied to the reduced BCS Hamiltonian

AutorDegroote, M.; Henderson, T. M.; Zhao, J.; Dukelsky, Jorge ; Scuseria, G. E.
Fecha de publicación14-mar-2016
EditorAmerican Physical Society
CitaciónPhysical Review B 93: 125124 (2016)
ResumenWe present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wave function. In between, we interpolate using a single parameter. The effective Hamiltonian is non-Hermitian and this polynomial similarity transformation theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit, whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction strengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian. ©2016 American Physical Society
Descripción10 págs.; 12 figs.
Versión del editorhttps://doi.org/10.1103/PhysRevB.93.125124
Identificadoresdoi: 10.1103/PhysRevB.93.125124
issn: 1550-235X
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Polynomial.pdf531,71 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.