English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/140260
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Evidence for two disparate spin dynamic regimes within Fe-substituted La0.7 Pb0.3 (Mn1-x Fex) O3 (0≤x≤0.2) colossal magnetoresistive manganites: Neutron spin-echo measurements

AutorGutiérrez, J.; Barandiarán, J.M.; Bermejo, Francisco Javier ; Mondelli, C.; Romano, P.; Fouquet, P.; Monkenbusch, M.
Fecha de publicación1-nov-2007
EditorAmerican Physical Society
CitaciónPhysical Review B - Condensed Matter and Materials Physics 76: 184401 (2007)
ResumenThe spin dynamics of substituted colossal magnetoresistive (CMR) manganites of general formula La0.7 Pb0.3 (Mn1-x Fex) O3, 0≤x≤0.2 is investigated by means of neutron spin-echo measurements. Substitution of Mn by Fe leads to a strong decrease of the temperature of macroscopic magnetic long-range ordering with a concomitant enhancement of the CMR effect. For x=0.2, a long-range-ordered state is not achieved as a result of the increase in antiferromagnetic interactions brought forward by Fe+3 -Mn couplings. The results display two relaxations having well separated decay constants. A fast process with a relaxation time of about 10 ps within the paramagnetic phase is found for all compositions. It shows a remarkably strong dependence with temperature and sample composition as the apparent activation energy for spin diffusion as well as the preexponential term exemplify. The physical origin of such a fast relaxation is assigned to heavily damped or overdamped spin waves (spin diffusion) on the basis of some signatures of excitations having finite frequencies found for the parent compound La0.7 Pb0.3 Mn O3 at temperatures just below Tc, together with preliminary data on the effect of Fe doping on the stiffness constant. A slower relaxation is present for all compositions. Its temperature dependence follows the behavior of the macroscopic magnetization, and its intensity grows within the ordered ferromagnetic state. Its physical origin is ascribed to collective reorientation of nanoscale ferromagnetic domains on the basis of the wave-vector dependence of its relaxation rate and amplitude. © 2007 The American Physical Society.
Descripción10 págs.; 7 figs.; 1 tab. ; PACS number s : 75.25. z, 75.30.Ds, 75.40.Gb, 75.47.Gk
Versión del editorhttps://doi.org/10.1103/PhysRevB.76.184401
URIhttp://hdl.handle.net/10261/140260
DOI10.1103/PhysRevB.76.184401
Identificadoresdoi: 10.1103/PhysRevB.76.184401
issn: 1098-0121
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Evidence.pdf338,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.