English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/139935
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

A perturbative and variational approach to quantum lattice Hamiltonians

AutorEsteve, J.G.; Sierra, Germán
Fecha de publicación1-abr-1995
EditorAmerican Physical Society
CitaciónPhysical Review B 51: 8928- 8938 (1995)
ResumenWe propose a method to construct the ground state ψ(λ) of local lattice Hamiltonians with the generic form H0+λH1, where λ is a coupling constant and H0 is a Hamiltonian with a nondegenerate ground state ψ0. The method is based on the choice of an exponential ansatz ψ(λ)=exp[U(λ)]ψ0, which is a sort of generalized lattice version of a Jastrow wave function. We combine perturbative and variational techniques to get successive approximations of the operator U(λ). Perturbation theory is used to set up a variational method which in turn produces nonperturbative results. The computation with this kind of ansatz leads us to associate to the original quantum-mechanical problem a statistical-mechanical system defined in the same spatial dimension. In some cases these statistical-mechanical systems turn out to be integrable, which allows us to obtain exact upper bounds to the energy. The general ideas of our method are illustrated in the example of the Ising model in a transverse field. © 1995 The American Physical Society.
Descripción11 págs.; 2 figs.; 2 tabs.; 4 apps.
Versión del editorhttps://doi.org/10.1103/PhysRevB.51.8928
URIhttp://hdl.handle.net/10261/139935
DOI10.1103/PhysRevB.51.8928
Identificadoresdoi: 10.1103/PhysRevB.51.8928
issn: 0163-1829
Aparece en las colecciones: (CFMAC-IFF) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Perturbative.pdf409,49 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.