Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/139817
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem

AutorSherwen, T.; Schmidt, J.A.; Evans, M.J.; Carpenter, L.J.; Großmann, K.; Eastham, S.D.; Jacob, Daniel J.; Dix, B.; Koenig, T.K.; Sinreich, R.; Ortega, I.; Volkamer, R.; Saiz-Lopez, A. CSIC ORCID; Prados-Roman, C. CSIC ORCID; Mahajan, Anoop S.; Ordóñez, C. CSIC ORCID
Fecha de publicación2016
EditorEuropean Geophysical Society
CitaciónAtmospheric Chemistry and Physics 16: 12239- 12271 (2016)
ResumenWe present a simulation of the global present-day composition of the troposphere which includes the chemistry of halogens (Cl, Br, I). Building on previous work within the GEOS-Chem model we include emissions of inorganic iodine from the oceans, anthropogenic and biogenic sources of halogenated gases, gas phase chemistry, and a parameterised approach to heterogeneous halogen chemistry. Consistent with Schmidt et al. (2016) we do not include sea-salt debromination. Observations of halogen radicals (BrO, IO) are sparse but the model has some skill in reproducing these. Modelled IO shows both high and low biases when compared to different datasets, but BrO concentrations appear to be modelled low. Comparisons to the very sparse observations dataset of reactive Cl species suggest the model represents a lower limit of the impacts of these species, likely due to underestimates in emissions and therefore burdens. Inclusion of Cl, Br, and I results in a general improvement in simulation of ozone (O3) concentrations, except in polar regions where the model now underestimates O3 concentrations. Halogen chemistry reduces the global tropospheric O3 burden by 18.6ĝ€%, with the O3 lifetime reducing from 26 to 22 days. Global mean OH concentrations of 1.28ĝ€ × ĝ€106ĝ€moleculesĝ€cmĝ'3 are 8.2ĝ€% lower than in a simulation without halogens, leading to an increase in the CH4 lifetime (10.8ĝ€%) due to OH oxidation from 7.47 to 8.28 years. Oxidation of CH4 by Cl is small (ĝ1/4 ĝ€2ĝ€%) but Cl oxidation of other VOCs (ethane, acetone, and propane) can be significant (ĝ1/4 ĝ€15-27ĝ€%). Oxidation of VOCs by Br is smaller, representing 3.9ĝ€% of the loss of acetaldehyde and 0.9ĝ€% of the loss of formaldehyde.
URIhttp://hdl.handle.net/10261/139817
DOI10.5194/acp-16-12239-2016
Identificadoresdoi: 10.5194/acp-16-12239-2016
issn: 1680-7324
Aparece en las colecciones: (IQF) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
acp-16-12239-2016.pdf5,72 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

208
checked on 18-abr-2024

WEB OF SCIENCETM
Citations

201
checked on 24-feb-2024

Page view(s)

391
checked on 24-abr-2024

Download(s)

608
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.