Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/139285
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorSequeira-Mendes, Joana-
dc.contributor.authorGutiérrez Armenta, Crisanto-
dc.date.accessioned2016-10-25T08:41:37Z-
dc.date.available2016-10-25T08:41:37Z-
dc.date.issued2015-09-02-
dc.identifierdoi: 10.1007/s00412-015-0538-5-
dc.identifierissn: 1432-0886-
dc.identifier.citationChromosoma 125: 1 (2015)-
dc.identifier.urihttp://hdl.handle.net/10261/139285-
dc.description.abstractThe genetic information is stored in the eukaryotic nucleus in the form of chromatin. This is a macromolecular entity that includes genomic DNA and histone proteins that form nucleosomes, plus a large variety of chromatin-associated non-histone proteins. Chromatin is structurally and functionally organised at various levels. One reveals the linear topography of DNA, histones and their post-translational modifications and non-histone proteins along each chromosome. This level provides regulatory information about the association of genomic elements with particular signatures that have been used to define chromatin states. Importantly, these chromatin states correlate with structural and functional genomic features. Another regulatory layer is established at the level of the 3D organisation of chromatin within the nucleus, which has been revealed clearly as non-random. Instead, a variety of intra- and inter-chromosomal genomic domains with specific epigenetic and functional properties has been identified. In this review, we discuss how the recent advances in genomic approaches have contributed to our understanding of these two levels of genome architecture. We have emphasised our analysis with the aim of integrating information available for yeast, Arabidopsis, Drosophila, and mammalian cells. We consider that this comparative study helps define common and unique features in each system, providing a basis to better understand the complexity of genome organisation.-
dc.description.sponsorshipMinisterio de Economía y Competitividad (grant BFU2012–34821) and an institutional grant of Fundación Ramón Areces to the Centro de Biología Molecular Severo Ochoa.-
dc.publisherSpringer Nature-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleGenome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus-
dc.typeartículo-
dc.identifier.doi10.1007/s00412-015-0538-5-
dc.date.updated2016-10-25T08:41:38Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderFundación Ramón Areces-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100008054es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypeartículo-
Aparece en las colecciones: (CBM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
603118.pdf768,09 kBUnknownVisualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

24
checked on 08-abr-2024

WEB OF SCIENCETM
Citations

20
checked on 26-feb-2024

Page view(s)

363
checked on 23-abr-2024

Download(s)

474
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.