English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/139204
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms

AutorVilar del Hoyo, Lara ; Gómez, Israel; Martínez-Vega, Javier ; Echavarría Daspet, María Pilar; Riaño, David ; Martín, M. Pilar
Palabras claveWildfires
Population density
Fire suppression technology
Agriculture
Rural areas
Fuels
Probability density
Roads
Fecha de publicación24-ago-2016
EditorPublic Library of Science
CitaciónPlos One, 11(8): e0161344 (2016)
ResumenThe socio-economic factors are of key importance during all phases of wildfire management that include prevention, suppression and restoration. However, modeling these factors, at the proper spatial and temporal scale to understand fire regimes is still challenging. This study analyses socio-economic drivers of wildfire occurrence in central Spain. This site represents a good example of how human activities play a key role over wildfires in the European Mediterranean basin. Generalized Linear Models (GLM) and machine learning Maximum Entropy models (Maxent) predicted wildfire occurrence in the 1980s and also in the 2000s to identify changes between each period in the socio-economic drivers affecting wildfire occurrence. GLM base their estimation on wildfire presence-absence observations whereas Maxent on wildfire presence-only. According to indicators like sensitivity or commission error Maxent outperformed GLM in both periods. It achieved a sensitivity of 38.9% and a commission error of 43.9% for the 1980s, and 67.3% and 17.9% for the 2000s. Instead, GLM obtained 23.33, 64.97, 9.41 and 18.34%, respectively. However GLM performed steadier than Maxent in terms of the overall fit. Both models explained wildfires from predictors such as population density and Wildland Urban Interface (WUI), but differed in their relative contribution. As a result of the urban sprawl and an abandonment of rural areas, predictors like WUI and distance to roads increased their contribution to both models in the 2000s, whereas Forest-Grassland Interface (FGI) influence decreased. This study demonstrates that human component can be modelled with a spatio-temporal dimension to integrate it into wildfire risk assessment.
Versión del editorhttp://dx.doi.org/10.1371/journal.pone.0161344
URIhttp://hdl.handle.net/10261/139204
DOI10.1371/journal.pone.0161344
ISSN1932-6203
Aparece en las colecciones: (CCHS-IEGD) Artículos
(IGEO) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PlosOne_2016_11_8_Vilar.PDF3,06 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.