English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/138982
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Quality assessment of resistance spot welding joints of AISI 304 stainless steel based on elastic nets

AutorMartín, Óscar; Ahedo, Virginia; Santos, José Ignacio ; Tiedra Frontaura, Pilar de; Galán, José Manuel
Palabras claveSmoothing splines
Quality assessment
Elastic nets
Tensile shear load bearing capacity
AISI 304 stainless steel
Resistance spot welding
Fecha de publicación2016
EditorElsevier
CitaciónMaterials Science & Engineering: A: Structural Materials: Properties, Microstructure and Processing (676) : 173-181 (2016)
ResumenIn this work, the quality of resistance spot welding (RSW) joints of 304 austenitic stainless steel (SS) is assessed from its tensile shear load bearing capacity (TSLBC). A predictive model using a polynomial expansion of the relevant welding parameters, i.e. welding current (WC), welding time (WT) and electrode force (EF) and elastic net regularization is proposed. The predictive power of the elastic net approach has been compared to artificial neural networks (ANNs), previously used to predict TSLBC, and smoothing splines in the framework of a generalized additive model. The results show that the predictive and classification error of the elastic net model are statistically comparable to benchmarks of the best pattern recognition tools whereas it overcomes correlation problems and performs variable selection at the same time, resulting in a simpler and more interpretable model. These features make the elastic net model amenable to be used in the design of welding conditions and in the control of manufacturing processes.
URIhttp://hdl.handle.net/10261/138982
DOI10.1016/j.msea.2016.08.112
Identificadoresdoi: 10.1016/j.msea.2016.08.112
issn: 0921-5093
Aparece en las colecciones: (IMF) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.