English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/137892
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Flavonoid glycosides from Persea caerulea. Unraveling their interactions with SDS-micelles through matrix-assisted DOSY, PGSE, mass spectrometry, and NOESY

AutorÁlvarez, Juan M.; Raya-Barón, Álvaro; Nieto, Pedro M. ; Cuca, Luis E.; Carrasco, Alegría; Fernández-Gutiérrez, Alberto; Fernández, Ignacio
Fecha de publicación2016
CitaciónMagnetic Resonance in Chemistry, 54(9): 718-728 (2016)
Resumenwo flavonoid glycosides derived from rhamnopyranoside (1) and arabinofuranoside (2) have been isolated from leaves of Persea caerulea for the first time. The structures of 1 and 2 have been established by 1H NMR, 13C NMR, and IR spectroscopy, together with LC–ESI–TOF and LC–ESI–IT MS spectrometry. From the MS and MS/MS data, the molecular weights of the intact molecules as well as those of quercetin and kaempferol together with their sugar moieties were deduced. The NMR data provided information on the identity of the compounds, as well as the α and β configurations and the position of the glycosides on quercetin and kaempferol. We have also explored the application of sodium dodecyl sulfate (SDS) normal micelles in binary aqueous solution, at a range of concentrations, to the diffusion resolution of these two glycosides, by the application of matrix-assisted diffusion ordered spectroscopy (DOSY) and pulse field gradient spin echo (PGSE) methodologies, showing that SDS micelles offer a significant resolution which can, in part, be rationalized in terms of differing degrees of hydrophobicity, amphiphilicity, and steric effects. In addition, intra-residue and inter-residue proton–proton distances using nuclear Overhauser effect build-up curves were used to elucidate the conformational preferences of these two flavonoid glycosides when interacting with the micelles. By the combination of both diffusion and nuclear Overhauser spectroscopy techniques, the average location site of kaempferol and quercetin glycosides has been postulated, with the former exhibiting a clear insertion into the interior of the SDS-micelle, whereas the latter is placed closer to the surface.
Versión del editorhttp://dx.doi.org/10.1002/mrc.4434
Aparece en las colecciones: (IIQ) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
16_MRC_release.pdf1,3 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.