Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/137525
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
DC FieldValueLanguage
dc.contributor.authorAleixandre, Manuel-
dc.contributor.authorSantos, José Pedro-
dc.contributor.authorSayago, Isabel-
dc.contributor.authorCabellos Caballero, Mariano-
dc.contributor.authorArroyo, Teresa-
dc.contributor.authorHorrillo, Carmen-
dc.date.accessioned2016-09-30T10:49:52Z-
dc.date.available2016-09-30T10:49:52Z-
dc.date.issued2015-04-13-
dc.identifierissn: 1424-8220-
dc.identifier.citationSensors 15(4): 8429-8443 (2015)-
dc.identifier.urihttp://hdl.handle.net/10261/137525-
dc.description.abstractTwo novel applications using a portable and wireless sensor system (e-nose) for the wine producing industry—The recognition and classification of musts coming from different grape ripening times and from different grape varieties—Are reported in this paper. These applications are very interesting because a lot of varieties of grapes produce musts with low and similar aromatic intensities so they are very difficult to distinguish using a sensory panel. Therefore the system could be used to monitor the ripening evolution of the different types of grapes and to assess some useful characteristics, such as the identification of the grape variety origin and to prediction of the wine quality. Ripening grade of collected samples have been also evaluated by classical analytical techniques, measuring physicochemical parameters, such as, pH, Brix, Total Acidity (TA) and Probable Grade Alcoholic (PGA). The measurements were carried out for two different harvests, using different red (Barbera, Petit Verdot, Tempranillo, and Touriga) and white (Malvar, Malvasía, Chenin Blanc, and Sauvignon Blanc) grape musts coming from the experimental cellar of the IMIDRA at Madrid. Principal Component Analysis (PCA) and Probabilistic Neural Networks (PNN) have been used to analyse the obtained data by e-nose. In addition, and the Canonical Correlation Analysis (CCA) method has been carried out to correlate the results obtained by both technologies. © 2015 by the authors; licensee MDPI, Basel, Switzerland.-
dc.description.sponsorshipThis work is being supported by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) of the Economía y Competitividad Ministry, under the project RTA2011-00095-C02-02. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).-
dc.publisherMultidisciplinary Digital Publishing Institute-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.subjectPNN-
dc.subjectAnalytical parameters-
dc.subjectPCA-
dc.subjectMust-
dc.subjectElectronic nose-
dc.subjectDegree of ripeness-
dc.subjectCCA-
dc.titleA wireless and portable electronic nose to differentiate musts of different ripeness degree and grape varieties-
dc.typeartículo-
dc.identifier.doi10.3390/s150408429-
dc.relation.publisherversionhttp://dx.doi.org/10.3390/s150408429-
dc.date.updated2016-09-30T10:49:53Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-sa/4.0/-
dc.contributor.funderConsejo Superior de Investigaciones Científicas (España)-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003339es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.pmid25871715-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Appears in Collections:(ITEFI) Informes y documentos de trabajo
Files in This Item:
File Description SizeFormat
sensors-15-08429.pdf2,33 MBAdobe PDFThumbnail
View/Open
Show simple item record

CORE Recommender

PubMed Central
Citations

12
checked on Apr 21, 2024

SCOPUSTM   
Citations

34
checked on Apr 16, 2024

WEB OF SCIENCETM
Citations

29
checked on Feb 24, 2024

Page view(s)

280
checked on Apr 21, 2024

Download(s)

333
checked on Apr 21, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Related articles:


This item is licensed under a Creative Commons License Creative Commons