English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/13739
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Properties of the rho and sigma Mesons from Unitary chiral Dynamics

AutorNieves, Juan Miguel ; Ruiz Arriola, E.
Palabras claveHigh Energy Physics
Phenomenology (hep-ph)
Fecha de publicación28-abr-2009
ResumenThe chiral limit of the rho and sigma masses and widths is discussed. We work within the inverse amplitude method to one loop in SU(2) ChPT and analyze the consequences that all chiral logarithms cancel out in the rho-channel, while they do not cancel for the sigma case, and how they strongly influence the properties of this latter resonance. Our results confirm and explain the different behavior of the sigma and rho poles for NC not far from 3, but we extend the analysis to very large NC, where the behavior of these two resonances is re-analyzed. We note that the rather natural requirement of consistency between resonance saturation and unitarization imposes useful constraints. By looking only at the rho-channel, and within the single resonance approximation, we find that the masses of the first vector and scalar meson nonets, invoked in the single resonance approximation, turn out to be degenerated in the large NC limit. On the contrary we show that, for sufficiently large NC, the scalar meson evolution lies beyond the applicability reach of the one-loop inverse amplitude method and if the scalar channel is also incorporated in the analysis, it may lead, in some cases, to phenomenologically inconsistent results.
Descripción11 pages, 1 figure
URIhttp://hdl.handle.net/10261/13739
ReferenciasarXiv:0904.4344v1
Aparece en las colecciones: (IFIC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
0904.pdf238,22 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.