English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/137297
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Quantum effects in the realm of subnanometric plasmon-enhanced spectroscopy

AutorAizpurua, Javier
Fecha de publicación2015
CitaciónICES 2015
ResumenPlasmonic nanogaps are formed at the junction of two metallic interfaces providing a great opportunity to explore atomic-scale morphologies and complex photochemical processes by optical means, thanks to the excitation of intense surface plasmonic modes. In recent years, optical spectroscopy of these cavities has proven to be extremely sensitive to atomic-scale features that determine the chemistry and the optoelectronics in the gaps. We exploit different classical and quantum theoretical approaches to address the optics of metallic nanogaps where the separation distances are taken to the extreme, reaching Ångstrom-scale dimensions. In this regime, classical theories fail to address the fine details of the optical response, and more sophisticated quantum theories need to be implemented. In this talk, I will focus on the implications that a full atomistic description of metallic nanostructures has in the electromagnetic field enhancement and localization of light. Different crystallographic facets forming vertices and edges in plasmonic gaps are able to critically modify the properties of the cavities, reaching atomic-scale resolution within a larger hosting nanometric structure. The ultimate confinement of light is thus set by the quantum nature of the atoms forming a nanostructure, a situation that requires a convenient quantum description of the optical response. These aspects are crucial to explain the resolutions achieved in a variety of experiments in field-enhanced spectroscopy and microscopy. Furthermore, I will address how different morphological aspects in a gap determine the emergence of tunnelling between particles, and define threshold separation distances where strong nonlinear processes can occur. The atomic scale is a challenging regime in plasmonics, progressively achieved experimentally. New theoretical tools, as the ones presented here, need to be introduced to understand this regime and implement new concepts in optoelectronics and field-enhanced spectroscopy.
DescripciónResumen del trabajo presentado a la 2nd International Conference on Enhanced Spectroscopies, celebrada en Messina (Italia) del 12 al 15 de octubre de 2015.
Aparece en las colecciones: (CFM) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.