English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/135718
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Efficient light emission of pure Europium oxide thin films prepared by Pulsed Laser Deposition

AutorMariscal, A. ; Quesada, Adrián; Camps, I. ; Fernandez, J.F.; Serna, Rosalía
Fecha de publicación11-may-2015
EditorEuropean Materials Research Society
CitaciónAdvanced Materials Synthesis, Processing and Characterization (2015)
ResumenResume : Europium oxide films have received large attraction for their use in the fields of microelectronics, spintronics, magnetism and photonics. The fabrication of crystalline high quality pure Eu-oxide thin films is challenging, and growth under oxide gas environment and high temperature processing are usually necessary. However, such processing can lead to the formation of Eu-silicides when Si substrates are used [1]. In this work, we report the preparation of Eu-oxide thin films (200 nm) in vacuum by pulsed laser deposition at room temperature on Si substrates. For deposition an ArF laser (193 nm) was focused on a pure sintered Europium oxide bulk target. In order to study the possible reaction of the Eu-oxide film with the Si substrate films with and without an amorphous Al2O3 buffer layer were deposited. Post-deposition annealing treatments where performed under different conditions. As result, according to the analysis of Raman and X-ray Diffraction (XRD) measurements, crystalline films are formed where both cubic and monoclinic phases can be identified. No silicide formations have been seen. Photoluminescence has been studied under laser excitation at 355 nm. All the films show intense and narrow peaks that are attributed to the intra 4f-transitions of Eu3+ ion in a crystalline host. However, clearly different emission spectra are observed as a function of the specific crystalline phases present. Changes in the magnetic hyperfine 5D0 7F0 transition at 612 nm confirms the crystal field effect and its influence over energy level splitting. The relationship of the photoluminescence emission spectra and the crystal structure will be discussed, as well as the possibility of the reduction of the Eu oxidation state. [1] G. Bellochi et al., Optics Express 20, 5501 (2012)
Descripción2015 Spring, Laser and plasma processing for advanced applications in material science, Strasboug, France, 11-13 May 2015
Aparece en las colecciones: (ICV) Comunicaciones congresos
(CFMAC-IO) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.