English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/135168
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Using multi-tracer inference to move beyond single-catchment ecohydrology

AutorAbbott, Benjamin W.; Baranov, Viktor; Mendoza-Lera, C.; Nikolakopoulou, Myrto; Harjung, Astrid; Kolbe, Tamara; Balasubramanian, Mukundh N.; Vaessen, Timothy N. ; Ciocca, Francesco; Campeau, Audrey; Wallin, Marcus B.; Romeijn, Paul; Antonelli, Marta; Gonçalves, José; Datry, Thibault; Laverman, Anniet M.; de Dreuzy, Jean-Raynald; Hannah, David M.; Krause, Stefan; Oldham, Carolyn; Pinay, Gilles
Palabras claveHydrological tracer
Water
Environmental hydrology
Flowpath
Residence time
Exposure time
Reactive transport
GW-SW interactions
Hot spots
Hot moments
Damköhler
Péclet
HotDam
Ecohydrology
Crossed proxies
Tracer
Groundwater
Surface water
Aquatic ecology
Fecha de publicación2016
CitaciónEarth-Science Reviews 160 : 19-42 (2016)
ResumenProtecting or restoring aquatic ecosystems in the face of growing anthropogenic pressures requires an understanding of hydrological and biogeochemical functioning across multiple spatial and temporal scales. Recent technological and methodological advances have vastly increased the number and diversity of hydrological, biogeochemical, and ecological tracers available, providing potentially powerful tools to improve understanding of fundamental problems in ecohydrology, notably: 1. Identifying spatially explicit flowpaths, 2. Quantifying water residence time, and 3. Quantifying and localizing biogeochemical transformation. In this review, we synthesize the history of hydrological and biogeochemical theory, summarize modern tracer methods, and discuss how improved understanding of flowpath, residence time, and biogeochemical transformation can help ecohydrology move beyond description of site-specific heterogeneity. We focus on using multiple tracers with contrasting characteristics (crossing proxies) to infer ecosystem functioning across multiple scales. Specifically, we present how crossed proxies could test recent ecohydrological theory, combining the concepts of hotspots and hot moments with the Damköhler number in what we call the HotDam framework.
Descripción24 páginas, 9 figuras, 1 tabla.
Versión del editorhttp://dx.doi.org/10.1016/j.earscirev.2016.06.014
URIhttp://hdl.handle.net/10261/135168
DOI10.1016/j.earscirev.2016.06.014
ISSN0012-8252
E-ISSN1872-6828
Aparece en las colecciones: (CEAB) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.