English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/134538
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Improving record linkage with supervised learning for disclosure risk assessment

AutorAbril, Daniel; Navarro-Arribas, Guillermo; Torra, Vicenç
Palabras claveRecord linkage
Data privacy
Fecha de publicación2012
EditorElsevier
CitaciónInformation Fusion 13 (4): 274- 284 (2012)
ResumenIn data privacy, record linkage can be used as an estimator of the disclosure risk of protected data. To model the worst case scenario one normally attempts to link records from the original data to the protected data. In this paper we introduce a parametrization of record linkage in terms of a weighted mean and its weights, and provide a supervised learning method to determine the optimum weights for the linkage process. That is, the parameters yielding a maximal record linkage between the protected and original data. We compare our method to standard record linkage with data from several protection methods widely used in statistical disclosure control, and study the results taking into account the performance in the linkage process, and its computational effort. © 2011 Elsevier B.V. All rights reserved.
URIhttp://hdl.handle.net/10261/134538
DOI10.1016/j.inffus.2011.05.001
Identificadoresdoi: 10.1016/j.inffus.2011.05.001
issn: 1566-2535
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.