English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/133866
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Toward a privacy agent for information retrieval

AutorJuarez, Marc; Torra, Vicenç
Palabras clavePrivate information retrieval
Non-cooperative agents
Targeted advertising
Disclosure risk
Browsing history
Query classification
Search process
Internet search engine
Fecha de publicación2013
EditorJohn Wiley & Sons
CitaciónInternational Journal of Intelligent Systems 28 (6): 606- 622 (2013)
ResumenIn this paper, we tackle the private information retrieval (PIR) problem associated with the use of Internet search engines. We address the desire for a user to retrieve information from the Web without the search provider learning about it. Traditional PIR protocols present two main shortcomings for their application: (i) They assume cooperation by the database, which is not affordable for a real-world search engine like Google and (ii) their computational complexity is linear in the size of the database, which is unfeasible in the case of the Web. More recent approaches relax PIR conditions to overcome these limitations and present some level of privacy. Mostly, they aim to distort server logs regardless of the loss of information that is involved. Server logs are used by search engines for profiling and, thereby, provide personalized results. This becomes a user's need given the growth of the Web and can also be used for targeted advertising. This study focuses on a noncooperative agent for private search that considers profiling as valuable data used for both sides of the search process. It is based on the assumption that the user's identity is formed by the union of various areas of interests or facets. Managing the HTTP connections properly, submitted queries are mapped to different server logs according to these facets. The rationale is that these logs cannot be used for tracing the user while they are still helpful for profiling. We present a personalized query classification approach based on the user's browsing history and to provide empirical results; we developed an attacking algorithm against the agent that shows that the disclosure risk is reduced. © 2013 Wiley Periodicals, Inc.
URIhttp://hdl.handle.net/10261/133866
DOI10.1002/int.21595
Identificadoresdoi: 10.1002/int.21595
issn: 0884-8173
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.