English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/133581

Inferring the relative resilience of alternative states

AutorAngeler, David G.; Allen, Craig R.; Rojo, Carmen; Álvarez Cobelas, Miguel ; Rodrigo, María A.; Sánchez Carrillo, Salvador
Fecha de publicación11-oct-2013
EditorPublic Library of Science
CitaciónPLoS ONE 8(10): e77338 (2013)
ResumenEcological systems may occur in alternative states that differ in ecological structures, functions and processes. Resilience is the measure of disturbance an ecological system can absorb before changing states. However, how the intrinsic structures and processes of systems that characterize their states affects their resilience remains unclear. We analyzed time series of phytoplankton communities at three sites in a floodplain in central Spain to assess the dominant frequencies or "temporal scales" in community dynamics and compared the patterns between a wet and a dry alternative state. The identified frequencies and cross-scale structures are expected to arise from positive feedbacks that are thought to reinforce processes in alternative states of ecological systems and regulate emergent phenomena such as resilience. Our analyses show a higher species richness and diversity but lower evenness in the dry state. Time series modeling revealed a decrease in the importance of short-term variability in the communities, suggesting that community dynamics slowed down in the dry relative to the wet state. The number of temporal scales at which community dynamics manifested, and the explanatory power of time series models, was lower in the dry state. The higher diversity, reduced number of temporal scales and the lower explanatory power of time series models suggest that species dynamics tended to be more stochastic in the dry state. From a resilience perspective our results highlight a paradox: increasing species richness may not necessarily enhance resilience. The loss of cross-scale structure (i.e. the lower number of temporal scales) in community dynamics across sites suggests that resilience erodes during drought. Phytoplankton communities in the dry state are therefore likely less resilient than in the wet state. Our case study demonstrates the potential of time series modeling to assess attributes that mediate resilience. The approach is useful for assessing resilience of alternative states across ecological and other complex systems.
Versión del editorhttp://dx.doi.org/10.1371/journal.pone.0077338
Aparece en las colecciones: (MNCN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PLoS ONE 8(10) e77338 (2013).PDF1,21 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.