English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/133318
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Multi-target & multi-detector people tracker for mobile robots

AutorCorominas Murtra, Andreu ; Pagès, Jordi; Pfeiffer, Sammy
Fecha de publicación2015
EditorInstitute of Electrical and Electronics Engineers
CitaciónECMR 2015
ResumenPeople tracking is a key perception skill for mobile robots designed to share environments with human beings. It allows the robot to keep track of people around them, which is fundamental for two main reasons: safety and social interaction. This paper presents the work done on people tracking with the REEM robot after two years of paticipation at the RoboCup@home challenge. The main contribution of the paper is the tracker part, which is designed to be multi-target and to fuse heterogeneous detections from a variety of sensors, each one yielding different rates, field of views and quality performance. The paper carefully describes the tracker approach, based on multi-target particle filtering, as well as data association step, based on a probabilistic multi-hypothesis tree. Quantitative evaluations of real datasets using CLEAR MOT metrics are provided, comparing different sensor/detector set-ups and different data association approaches.
DescripciónTrabajo presentado a la European Conference on Mobile Robots celebrada en Lincoln (UK) del 2 al 4 de septiembre de 2015.
Versión del editorhttp://dx.doi.org/10.1109/ECMR.2015.7324223
URIhttp://hdl.handle.net/10261/133318
DOI10.1109/ECMR.2015.7324223
Identificadoresdoi: 10.1109/ECMR.2015.7324223
Aparece en las colecciones: (IRII) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
trackermobilerobots.pdf426,88 kBUnknownVisualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.