English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/133132
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Lie algebra-based kinematic prior for 3D human pose tracking

AutorSimo-Serra, Edgar; Torras, Carme ; Moreno-Noguer, Francesc
Fecha de publicación2015
CitaciónIAPR International Conference on Machine Vision Applications (2015)
ResumenWe propose a novel kinematic prior for 3D human pose tracking that allows predicting the position in subsequent frames given the current position. We first define a Riemannian manifold that models the pose and extend it with its Lie algebra to also be able to represent the kinematics. We then learn a joint Gaussian mixture model of both the human pose and the kinematics on this manifold. Finally by conditioning the kinematics on the pose we are able to obtain a distribution of poses for subsequent frames that which can be used as a reliable prior in 3D human pose tracking. Our model scales well to large amounts of data and can be sampled at over 100,000 samples/second. We show it outperforms the widely used Gaussian diffusion model on the challenging Human3.6M dataset.
DescripciónTrabajo presentado a la IAPR International Conference on Machine Vision Applications (MVA) celebrada en Tokyo (Japón) del 18 al 22 de mayo de 2015.
URIhttp://hdl.handle.net/10261/133132
Aparece en las colecciones: (IRII) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
posetracking.pdf243,7 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.