English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/132983
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Combining semantic and geometric features for object class segmentation of indoor scenes

AutorHusain, Farzad ; Schulz, Hannes; Dellen, Babette ; Torras, Carme ; Behnke, Sven
Palabras claveSemantic scene understanding
Categorization
Segmentation
Fecha de publicación2016
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Robotics and Automation Letters 2(1): 49-55 (2016)
ResumenScene understanding is a necessary prerequisite for robots acting autonomously in complex environments. Low-cost RGB-D cameras such as Microsoft Kinect enabled new methods for analyzing indoor scenes and are now ubiquitously used in indoor robotics. We investigate strategies for efficient pixelwise object class labeling of indoor scenes that combine both pretrained semantic features transferred from a large color image dataset and geometric features, computed relative to the room structures, including a novel distance-from-wall feature, which encodes the proximity of scene points to a detected major wall of the room. We evaluate our approach on the popular NYU v2 dataset. Several deep learning models are tested, which are designed to exploit different characteristics of the data. This includes feature learning with two different pooling sizes. Our results indicate that combining semantic and geometric features yields significantly improved results for the task of object class segmentation.
Versión del editorhttp://dx.doi.org/10.1109/LRA.2016.2532927
URIhttp://hdl.handle.net/10261/132983
DOI10.1109/LRA.2016.2532927
ISSN2377-3766
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Indoor-Scenes.pdf2,38 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.