English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/132916
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Incremental learning of skills in a task-parameterized Gaussian mixture model

AutorHoyos, Jose; Prieto, Flavio; Alenyà, Guillem ; Torras, Carme
Palabras claveProgramming by demonstration
Robot learning
Incremental learning
Fecha de publicación2016
EditorSpringer
CitaciónJournal of Intelligent and Robotic Systems 82(1): 81-99 (2016)
ResumenProgramming by demonstration techniques facilitate the programming of robots. Some of them allow the generalization of tasks through parameters, although they require new training when trajectories different from the ones used to estimate the model need to be added. One of the ways to re-train a robot is by incremental learning, which supplies additional information of the task and does not require teaching the whole task again. The present study proposes three techniques to add trajectories to a previously estimated task-parameterized Gaussian mixture model. The first technique estimates a new model by accumulating the new trajectory and the set of trajectories generated using the previous model. The second technique permits adding to the parameters of the existent model those obtained for the new trajectories. The third one updates the model parameters by running a modified version of the Expectation-Maximization algorithm, with the information of the new trajectories. The techniques were evaluated in a simulated task and a real one, and they showed better performance than that of the existent model.
Versión del editorhttp://dx.doi.org/10.1007/s10846-015-0290-3
URIhttp://hdl.handle.net/10261/132916
DOI10.1007/s10846-015-0290-3
ISSN0921-0296
E-ISSN1573-0409
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Gaussian-Mixture.pdf891,99 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.