English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/132892
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

The transition between strong and weak chaos in delay systems: Stochastic modeling approach

AutorJüngling, Thomas; D'Huys, Otti; Kinzel, Wolfgang
Fecha de publicación29-jun-2015
EditorAmerican Physical Society
CitaciónPhysical Review E 91(6): 062918 (2015)
Resumen© 2015 American Physical Society. We investigate the scaling behavior of the maximal Lyapunov exponent in chaotic systems with time delay. In the large-delay limit, it is known that one can distinguish between strong and weak chaos depending on the delay scaling, analogously to strong and weak instabilities for steady states and periodic orbits. Here we show that the Lyapunov exponent of chaotic systems shows significant differences in its scaling behavior compared to constant or periodic dynamics due to fluctuations in the linearized equations of motion. We reproduce the chaotic scaling properties with a linear delay system with multiplicative noise. We further derive analytic limit cases for the stochastic model illustrating the mechanisms of the emerging scaling laws.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevE.91.062918
Identificadorese-issn: 1550-2376
issn: 1539-3755
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
weak_chaos_Jungling.pdf567,6 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.