English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/132850
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Anomalous scaling in an age-dependent branching model

AuthorsKeller-Schmidt, Stephanie; Tugrul, Murat ; Eguíluz, Víctor M. ; Hernández-García, Emilio ; Klemm, Konstantin
Issue Date2-Feb-2015
PublisherAmerican Physical Society
CitationPhysical Review E 91(2): 022803 (2015)
Abstract© 2015 American Physical Society. We introduce a one-parametric family of tree growth models, in which branching probabilities decrease with branch age τ as τ-α. Depending on the exponent α, the scaling of tree depth with tree size n displays a transition between the logarithmic scaling of random trees and an algebraic growth. At the transition (α=1) tree depth grows as (logn)2. This anomalous scaling is in good agreement with the trend observed in evolution of biological species, thus providing a theoretical support for age-dependent speciation and associating it to the occurrence of a critical point.
Publisher version (URL)http://dx.doi.org/10.1103/PhysRevE.91.022803
Identifiersissn: 1550-2376
e-issn: 1550-2376
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
branching_model_Keller.pdf249,26 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.