English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/132482
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

A survey of genes encoding H2O2-producing GMC oxidoreductases in 10 Polyporales genomes

AutorFerreira, Patricia ; Carro, Juan; Serrano, Ana; Martínez, Ángel T.
Palabras claveBrown-rot fungi
Evolutionary relationships
GMC oxidoreductases
Sequenced genome analysis
White-rot fungi
Fecha de publicación1-nov-2015
EditorMycological Society of America
CitaciónMycologia 107(6) 1105–1119 ( 2015)
ResumenThe genomes of three representative Polyporales (Bjerkandera adusta, Phlebia brevispora and a member of the Ganoderma lucidum complex) recently were sequenced to expand our knowledge on the diversity and distribution of genes involved in degradation of plant polymers in this Basidiomycota order, which includes most wood-rotting fungi. Oxidases, including members of the glucose-methanol-choline (GMC) oxidoreductase superfamily, play a central role in the above degradative process because they generate extracellular H2O2 acting as the ultimate oxidizer in both white-rot and brown-rot decay. The survey was completed by analyzing the GMC genes in the available genomes of seven more species to cover the four Polyporales clades. First, an in silico search for sequences encoding members of the aryl-alcohol oxidase, glucose oxidase, methanol oxidase, pyranose oxidase, cellobiose dehydrogenase and pyranose dehydrogenase families was performed. The curated sequences were subjected to an analysis of their evolutionary relationships,followed by estimation of gene duplication/ reduction history during fungal evolution. Second,the molecular structures of the near one hundred GMC oxidoreductases identified were modeled to gain insight into their structural variation and expected catalytic properties. In contrast to ligninolytic peroxidases,whose genes are present in all white-rot Polyporales genomes and absent from those of brown-rot species, the H2O generating oxidases are widely distributed in both fungal types. This indicates that the GMC oxidases provide H2O2 for both ligninolytic peroxidase activity (in white-rot decay) and Fenton attack on cellulose (in brown-rot decay), after the transition between both decay patterns in Polyporales occurred.
Descripción15 p.-4 fig.-1 tab.
Versión del editorhttp://dx.doi.org/10.3852/15-027
Aparece en las colecciones: (CIB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Mycologia_A.T.Martínez_2015.pdfArtículo principal1,64 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.