English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/132091
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Response of marine bacterioplankton pH homeostasis gene expression to elevated CO2

AutorBunse, Carina; Lundin, Daniel; Karlsson, Christofer M. G.; Akram, Neelam; Vila-Costa, Maria ; Palovaara, J.; Svensson, Lovisa; Holmfeldt, Karin; González, José M.; Calvo, Eva María ; Pelejero, Carles ; Marrasé, Cèlia ; Dopson, Mark; Gasol, Josep M. ; Pinhassi, Jarone
Fecha de publicación2016
EditorNature Publishing Group
CitaciónNature Climate Change 6: 483–487 (2016)
ResumenHuman-induced ocean acidification impacts marine life. Marine bacteria are major drivers of biogeochemical nutrient cycles and energy fluxes1; hence, understanding their performance under projected climate change scenarios is crucial for assessing ecosystem functioning. Whereas genetic and physiological responses of phytoplankton to ocean acidification are being disentangled2–4, corresponding functional responses of bacterioplankton to pH reduction from elevated CO2 are essentially unknown. Here we show, from metatranscriptome analyses of a phytoplankton bloom mesocosmexperiment, that marine bacteria responded to lowered pH by enhancing the expression of genes encoding proton pumps, such as respiration complexes, proteorhodopsin and membrane transporters. Moreover, taxonomic transcript analysis showed that distinct bacterial groups expressed di erent pH homeostasis genes in response to elevated CO2. These responses were substantial for numerous pH homeostasis genes under low-chlorophyll conditions (chlorophyll a<2.5 g l1); however, the changes in gene expression under high-chlorophyll conditions (chlorophyll a>20 g l1) were low. Given that proton expulsion through pH homeostasis mechanisms is energetically costly, these findings suggest that bacterioplankton adaptation to ocean acidification could have long-term e ects on the economy of ocean ecosystems.
Descripción7 páginas, 3 figuras
Versión del editorhttp://dx.doi.org/10.1038/nclimate2914
URIhttp://hdl.handle.net/10261/132091
DOI10.1038/NCLIMATE2914
ISSN1758-678X
E-ISSN1758-6798
Aparece en las colecciones: (ICM) Artículos
(IDAEA) Artículos
(CEAB) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.