English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/132090
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Sustained impact of drought on wet shrublands mediated by soil physical changes

AuthorsDomínguez, María Teresa ; Emmett, B. A.
KeywordsSoil respiration
Acclimation
Water retention
Warming
Bryophyte
Calluna vulgaris
Soil structure
Issue DateFeb-2015
PublisherSpringer
CitationBiogeochemistry 122: 151-163 (2015)
AbstractProjected climate warming may substantially increase carbon emissions from wet organic soils, contributing to a positive feedback between the terrestrial carbon cycle and climate change. Evidence suggests that in these soils the stimulation of soil respiration by warming can be sustained over long periods of time due to the large availability of C substrates. However, the long-term response of wet organic soils to drought remains uncertain. Organo-mineral soils might be particularly vulnerable, because of their limited soil moisture pool to buffer drought events. Using a whole-ecosystem climate-change experiment in North Wales (UK) we show that soil respiration in podzolic (organo-mineral) soils from wet shrublands is more vulnerable to recurrent drought than to warming, and that the drought impact does not attenuate at decadal time scales. Stimulation of soil respiration by drought was linked to major changes in soil structure that led to a 54 % reduction in water holding capacity compared to control. Bryophyte abundance was found to buffer soil moisture losses, moderating soil CO2 efflux under warming. As there was no evidence of change in plant productivity to offset the increased soil C emissions under drought, this response may result in a positive climate feedback. The results indicate the potentially critical role that changes in sub-dominant vegetation and in soil physical properties may have in determining climate change impacts on soil C dynamics.
Description13 páginas.-- 6 figuras.-- 52 referencias.-- The online version of this article (doi:10.1007/s10533-014-0059-y) contains supplementary material, which is available to authorized users.-- Domínguez, María Teresa et al...
Publisher version (URL)http://dx.doi.org/10.1007/s10533-014-0059-y
URIhttp://hdl.handle.net/10261/132090
DOI10.1007/s10533-014-0059-y
E-ISSN1573-515X
Appears in Collections:(IRNAS) Artículos
Files in This Item:
File Description SizeFormat 
Sustained_impact_drought_wet_shrublands_Postprint_2015.pdf381,83 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.