English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/132084
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Current overview of S-nitrosoglutathione (GSNO) in higher plants

AutorCorpas, Francisco J.; Alché Ramírez, Juan de Dios; Barroso-Albarracín, Juan Bautista
Palabras claveOxígeno reactivo
Señalización celular vegetal
Oxido nítrico
Radicales libres
S-nitrosoglutatión (GSNO)
Efectos del estrés en plantas
Fecha de publicación8-may-2013
EditorFrontiers Media
CitaciónFrontiers in Plant Science 4:126. doi: 10.3389/fpls.2013.00126
ResumenS-nitrosoglutathione is a nitric oxide-derived molecule, generated by the interaction of nitric oxide (NO) with reduced glutathione (GSH) in a process called S-nitrosylation (Figure 1). The reaction appears to take place either through the formation of N2O3 or the addition of NO to a glutathionyl radical formed during this reaction (Broniowska et al., 2013). GSNO is regarded as an intracellular NO reservoir as well as a vehicle of NO throughout the cell, which enables NO biological activity to expand. GSNO is also considered to be the most abundant low-molecular-mass (LMM) S-nitrosothiol (SNO). This family includes other molecules such as S-nitrosocysteine (CySNO) and S-nitrosocysteinylglycine (GlyCySNO), which have been the subject of less study in the field of plant research. There is another group of SNOs called high-molecular mass (HMM) SNOs which are produced by NO binding to sulfhydryl (-SH) groups present in specific cysteine residues of proteins. Figure 1 shows a simple model of GSNO metabolism and its interactions with other molecules in cells where different reactions including S-nitrosylation, S-transnitrosation, and S-glutathionylation are involved (Hogg, 2002; Martínez-Ruiz and Lamas, 2007). In plants, research has focused on the importance of total SNOs in specific stress situations (Feechan et al., 2005; Chaki et al., 2011a) and on the identification of the potential protein targets of S-nitrosylation as this kind of post-translational modification can alter the function of the affected proteins (Astier et al., 2012). Initial studies in this area exogenously applied GSNO in order to identify the pool of potential protein candidates (Lindermayr et al., 2005). However, less attention has been paid to the abundance, distribution, and modulation of endogenous GSNO under natural and stress conditions. In this article, we will provide a current overview of GSNO in higher plants. [EN]
Versión del editordoi: 10.3389/fpls.2013.00126
Aparece en las colecciones: (EEZ) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
fpls-04-00126.pdfdoi: 10.3389/fpls.2013.001261,03 MBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.