English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/131900
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Data privacy using an evolutionary algorithm for invariant PRAM matrices

AutorMarés, Jordi; Shlomo, Natalie
Palabras claveData utility
Genetic operators
Disclosure risk
Fitness function
Probability transition matrices
Fecha de publicación2014
CitaciónComputational Statistics and Data Analysis 79: 1- 13 (2014)
ResumenDissemination of data with sensitive information has an implicit risk of unauthorized disclosure. Several masking methods have been developed in order to protect the data without the loss of too much information. One such method is the Post Randomization Method (PRAM) based on perturbations of a categorical variable according to a Markov probability transition matrix. The method has the drawback that it is difficult to find an optimal transition matrix to perform perturbations and maximize data utility. An evolutionary algorithm which generates an optimal probability transition matrix is proposed. Optimality is with respect to a pre-defined fitness function dependent on the aspects of the data that need to be preserved following perturbation. The algorithm embeds two properties: the invariance of the transition matrix to preserve marginal totals in expectation, and the control of diagonal probabilities which determine the amount of perturbation. Experimental results using a real data set are presented in order to illustrate and empirically evaluate the application of this algorithm. © 2014 Elsevier Ireland Ltd. All rights reserved.
Identificadoresdoi: 10.1016/j.csda.2014.05.002
issn: 0167-9473
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.