English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/131735
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Nodal Sampling: A New Image Reconstruction Algorithm for SMOS

AutorGonzález, Verónica ; Turiel, Antonio ; Olmedo, Estrella ; Martínez, Justino ; Corbella, I.; Camps, Adriano
Palabras claveImage reconstruction
Interferometric radiometer
Nodal points
Nodal sampling
Radio frequency interferences
Sidelobes
Soil Moisture and Ocean Salinity
RFI
SMOS
NS
Fecha de publicaciónabr-2016
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Geoscience and Remote Sensing 54(4): 2314-2328 (2016)
ResumenSoil moisture and ocean salinity (SMOS) brightness temperature (TB) images and calibrated visibilities are related by the so-called G-matrix. Due to the incomplete sampling at some spatial frequencies, sharp transitions in the TB scenes generate a Gibbs-like contamination ringing and spread sidelobes. In the current SMOS image reconstruction strategy, a Blackman window is applied to the Fourier components of the TBs to diminish the amplitude of artifacts such as ripples, as well as other Gibbs-like effects. In this paper, a novel image reconstruction algorithm focused on the reduction of Gibbs-like contamination in TB images is proposed. It is based on sampling the TB images at the nodal points, that is, at those points at which the oscillating interference causes the minimum distortion to the geophysical signal. Results show a significant reduction of ripples and sidelobes in strongly radio-frequency interference contaminated images. This technique has been thoroughly validated using snapshots over the ocean, by comparing TBs reconstructed in the standard way or using the nodal sampling (NS) with modeled TBs. Tests have revealed that the standard deviation of the difference between the measurement and the model is reduced around 1 K over clean and stable zones when using NS technique with respect to the SMOS image reconstruction baseline. The reduction is approximately 0.7 K when considering the global ocean. This represents a crucial improvement in TB quality, which will translate in an enhancement of the retrieved geophysical parameters, particularly the sea surface salinity
Descripción15 pages, 17 figures
Versión del editorhttp://dx.doi.org/10.1109/TGRS.2015.2499324
URIhttp://hdl.handle.net/10261/131735
DOI10.1109/TGRS.2015.2499324
Identificadoresdoi: 10.1109/TGRS.2015.2499324
issn: 0196-2892
Aparece en las colecciones: (ICM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.