English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/131396
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Class-based tag recommendation and user-based evaluation in online audio clip sharing

AutorFont, Frederic; Serra, Joan; Serra, Xavier
Palabras claveUser stud
Tag recommendation
Collaborative tagging
Fecha de publicación2014
CitaciónKnowledge-Based Systems 67: 131- 142 (2014)
ResumenOnline sharing platforms often rely on collaborative tagging systems for annotating content. In this way, users themselves annotate and describe the shared contents using textual labels, commonly called tags. These annotations typically suffer from a number of issues such as tag scarcity or ambiguous labelling. Hence, to minimise some of these issues, tag recommendation systems can be employed to suggest potentially relevant tags during the annotation process. In this work, we present a tag recommendation system and evaluate it in the context of an online platform for audio clip sharing. By exploiting domain-specific knowledge, the system we present is able to classify an audio clip among a number of predefined audio classes and to produce specific tag recommendations for the different classes. We perform an in-depth user-based evaluation of the recommendation method along with two baselines and a former version that we described in previous work. This user-based evaluation is further complemented with a prediction-based evaluation following standard information retrieval methodologies. Results show that the proposed tag recommendation method brings a statistically significant improvement over the previous method and the baselines. In addition, we report a number of findings based on the detailed analysis of user feedback provided during the evaluation process. The considered methods, when applied to real-world collaborative tagging systems, should serve the purpose of consolidating the tagging vocabulary and improving the quality of content annotations. © 2014 Elsevier B.V. All rights reserved.
Identificadoresdoi: 10.1016/j.knosys.2014.06.003
issn: 0950-7051
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
KNSYE_131-142.pdf935,99 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.