English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/131358
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Supervised learning using a symmetric bilinear form for record linkage

AutorAbril, Daniel; Torra, Vicenç; Navarro-Arribas, Guillermo
Palabras claveRisk assessment
Record linkage
Disclosure risk
Data privacy
Choquet integral
Parameterization
Fecha de publicación2014
EditorElsevier
CitaciónInformation Fusion 26: 144- 153 (2014)
Resumen© 2014 Elsevier B.V. All rights reserved. Record Linkage is used to link records of two different files corresponding to the same individuals. These algorithms are used for database integration. In data privacy, these algorithms are used to evaluate the disclosure risk of a protected data set by linking records that belong to the same individual. The degree of success when linking the original (unprotected data) with the protected data gives an estimation of the disclosure risk. In this paper we propose a new parameterized aggregation operator and a supervised learning method for disclosure risk assessment. The parameterized operator is a symmetric bilinear form and the supervised learning method is formalized as an optimization problem. The target of the optimization problem is to find the values of the aggregation parameters that maximize the number of re-identification (or correct links). We evaluate and compare our proposal with other non-parametrized variations of record linkage, such as those using the Mahalanobis distance and the Euclidean distance (one of the most used approaches for this purpose). Additionally, we also compare it with other previously presented parameterized aggregation operators for record linkage such as the weighted mean and the Choquet integral. From these comparisons we show how the proposed aggregation operator is able to overcome or at least achieve similar results than the other parameterized operators. We also study which are the necessary optimization problem conditions to consider the described aggregation functions as metric functions.
URIhttp://hdl.handle.net/10261/131358
DOI10.1016/j.inffus.2014.11.004
Identificadoresdoi: 10.1016/j.inffus.2014.11.004
issn: 1566-2535
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.