English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/130894
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorGrijalvo, Santiagoes_ES
dc.contributor.authorMayr, Judithes_ES
dc.contributor.authorEritja Casadellà, Ramónes_ES
dc.contributor.authorDíaz Díaz, Davides_ES
dc.date.accessioned2016-04-08T09:19:26Z-
dc.date.available2016-04-08T09:19:26Z-
dc.date.issued2016-01-28-
dc.identifier.citationBiomaterials Science 22;4(4): 555-574 (2016)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/130894-
dc.description.abstractHydrogels are hydrophilic three-dimensional networks with demonstrated potential for medical and pharmaceutical applications. Specifically, biopolymer-based hydrogels offer certain advantages over synthetic polymers in terms of biocompatibility and biodegradability. Because of their inherent properties, hydrogels are able to efficiently encapsulate and liberate in a controlled release manner, different hydrophobic and hydrophilic therapeutic molecules, including nucleic acids, proteins and antibodies. Several strategies have been reported in the literature to minimize the potential burst release of encapsulated drugs, thus preventing their local accumulation and consequent toxic responses. Within this context, liposomes embedded in hydrogels have emerged as an attractive strategy to reduce this undesirable effect. This tutorial review covers a selection of the most promising cationic, neutral and anionic biopolymer-based hydrogels containing liposomes, niosomes or vesicles for drug delivery or tissue engineering applications.es_ES
dc.description.sponsorshipThis work is supported by the University of Regensburg, the DFG (DI 1748/3-1), the Spanish Ministry of Education (Grant CTQ2014-52588-R, RTC-2014-2038-1), the Generalitat de Catalunya (2014/SGR/624), the Instituto de Salud Carlos III (CB06_01_0019) and the Spanish Ministry of Education, Culture and Sports. S.G. thanks the Spanish Ministry of Education, Culture and Sports for a “Jose Castillejo” grant within the researchers mobility program (Programa Estatal de Promoción del Talento y su Empleabilidad en I + D + i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016). D. D. D. thanks the Deutsche Forschungsgemeinschaft (DFG) for the Heisenberg Professorship Award. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)es_ES
dc.language.isoenges_ES
dc.publisherRoyal Society of Chemistry (UK)es_ES
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.titleBiodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of conveniencees_ES
dc.typeartículoes_ES
dc.identifier.doihttp://dx.doi.org/10.1039/C5BM00481K-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1039/C5BM00481Kes_ES
dc.rights.licensehttp://creativecommons.org/licenses/by/3.0/es_ES
dc.contributor.funderMinisterio de Educación, Cultura y Deporte (España)es_ES
dc.contributor.funderCSIC - Unidad de Recursos de Información Científica para la Investigación (URICI)-
dc.relation.csices_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003176es_ES
Appears in Collections:(IQAC) Artículos
Files in This Item:
File Description SizeFormat 
BiomaterSci2016review.pdf3,6 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.