English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/130656
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Generalization of Wertheim's theory for the assembly of various types of rings

AutorTavares, J. M.; Almarza, Noé G. ; Telo da Gama, M. M.
Fecha de publicación2015
EditorRoyal Society of Chemistry (Great Britain)
CitaciónSoft Matter 11: 5828- 5838 (2015)
ResumenThis journal is © The Royal Society of Chemistry. We generalize Wertheim's first order perturbation theory to account for the effect in the thermodynamics of the self-assembly of rings characterized by two energy scales. The theory is applied to a lattice model of patchy particles and tested against Monte Carlo simulations on a fcc lattice. These particles have 2 patches of type A and 10 patches of type B, which may form bonds AA or AB that decrease the energy by ε<inf>AA</inf> and by ε<inf>AB</inf> ≡ rε<inf>AA</inf>, respectively. The angle between the 2 A-patches on each particle is fixed at 60°, 90° or 120°. For values of r below 1/2 and above a threshold r<inf>th</inf> the models exhibit a phase diagram with two critical points. Both theory and simulation predict that r<inf>th</inf> increases when θ decreases. We show that the mechanism that prevents phase separation for models with decreasing values of θ is related to the formation of loops containing AB bonds. Moreover, we show that by including the free energy of B-rings (loops containing one AB bond), the theory describes the trends observed in the simulation results, but that for the lowest values of θ, the theoretical description deteriorates due to the increasing number of loops containing more than one AB bond.
URIhttp://hdl.handle.net/10261/130656
DOI10.1039/c5sm00559k
Identificadoresdoi: 10.1039/c5sm00559k
issn: 1744-6848
Aparece en las colecciones: (IQFR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.