English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/130599
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorAndrejczuk, Ewa-
dc.contributor.authorRodríguez-Aguilar, Juan Antonio-
dc.contributor.authorSierra, Carles-
dc.date.accessioned2016-03-30T13:08:00Z-
dc.date.available2016-03-30T13:08:00Z-
dc.date.issued2015-10-26-
dc.identifierdoi: 10.1007/978-3-319-25524-8_46-
dc.identifierissn: 03029743-
dc.identifierisbn: 978-331925523-1-
dc.identifier.citationLecture Notes in Computer Science, 18th International Conference on Principles and Practice of Multi-Agent Systems, PRIMA 2015; Bertinoro; Italy; 26 October 2015 through 30 October 2015; vol. 9387: 631-639, 2015-
dc.identifier.urihttp://hdl.handle.net/10261/130599-
dc.description.abstractIn this paper we introduce a new ranking algorithm, called Collaborative Judgement (CJ), that takes into account peer opinions of agents and/or humans on objects (e.g. products, exams, papers) as well as peer judgements over those opinions. The combination of these two types of information has not been studied in previous work in order to produce object rankings. We apply CJ to the use case of scientific paper assessment and we validate it over simulated data. The results show that the rankings produced by our algorithm improve current scientific paper ranking practice based on averages of opinions weighted by their reviewers’ self-assessments. © Springer International Publishing Switzerland 2015.-
dc.description.sponsorshipThe first author is supported by an Industrial PhD scholarship from the Generalitat de Catalunya. This work is also supported by the CollectiveMind project (Spanish Ministry of Economy and Competitiveness, grant number TEC2013- 49430-EXP) and the COR project (TIN2012-38876-C02-01 )-
dc.publisherSpringer-
dc.relationMINECO/ICTI2013-2016/TEC2013-49430-EXP-
dc.rightsclosedAccess-
dc.subjectRanking algorithm-
dc.subjectSelf assessment-
dc.subjectObject rankings-
dc.subjectNetwork security-
dc.subjectData privacy-
dc.subjectAlgorithms-
dc.titleCollaborative Judgement-
dc.typeartículo-
dc.identifier.doi10.1007/978-3-319-25524-8_46-
dc.date.updated2016-03-30T13:08:01Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderGeneralitat de Catalunya-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100002809es_ES
Appears in Collections:(IIIA) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.