English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/130429
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

On strongly standard complete fuzzy logics: $MTL^Q_*$ and its expansions

AutorVidal, Amanda; Godo, Lluis ; Esteva, Francesc
Palabras claveMTL logic expansions
Strong standard completeness
Fuzzy logics
Pavelka-style completeness
Rational expansions
Infinitary logics
Fecha de publicación30-jun-2015
EditorAtlantis Press
CitaciónProceedings IFSA-EUSFLAT,2015,pp.828-835
ResumenFinding strongly standard complete axiomatizations for t-norm based fuzzy logics (i.e. complete for deductions with infinite sets of premises w.r.t. semantics on the real unit interval [0, 1]) is still an open problem in general, even though results are already available for some particular cases like some infinitary logics based on a continuous t-norm or certain expansions of Monoidal t-norm based logic (MTL) with rational constant symbols. In this paper we propose a new approach towards the problem of defining strongly standard complete for logics with rational constants in a simpler way. We present a method to obtain a Hilbert-Style axiomatization of the logic associated to an arbitrary standard MTL-algebra expanded with additional connectives whose interpretations on [0, 1] are functions with no jump-type discontinuities.
URIhttp://hdl.handle.net/10261/130429
DOI10.2991/ifsa-eusflat-15.2015.117
Identificadoresdoi: 10.2991/ifsa-eusflat-15.2015.117
issn: 1951-6851
isbn: 978-94-62520-77-6
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
IFSA-EUSFLAT,2015,pp.828-835.pdf1,34 MBUnknownVisualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.