English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/130426
Título

Aspect selection for social recommender systems

AutorChen, Yokeyie; Ferrer, Xavier; Wiratunga, Nirmalie; Plaza, Enric
Palabras claveStructured approach
Social recommenders
Sentiment analysis
Selection techniques
Online reviews
Comparison metrics
Binary classification
Recommender systems
CBR
Recommenders
Aspect extraction
Experience web
Social recommender systems
Fecha de publicación28-sep-2015
EditorSpringer
CitaciónCase-Based Reasoning Research and Development, Proceedings. ICCBR-2015, Lecture Notes in Computer Science, Vol.9343, pp.60-72.
ResumenIn this paper, we extend our previous work on social recommender systems to harness knowledge from product reviews. By mining product reviews, we can exploit sentiment-rich content to ascertain user opinion expressed over product aspects. Aspect aware sentiment analysis provides a more structured approach to product comparison. However, aspects extracted using NLP-based techniques remain too large and lead to poor quality product comparison metrics. To overcome this problem, we explore the utility of feature selection heuristics based on frequency counts and Information Gain (IG) to rank and select the most useful aspects. Here an interesting contribution is the use of top ranked products from Amazon to formulate a binary classification over products to form the basis for the supervised IG metric. Experimental results on three related product families (Compact Cameras, DSLR Cameras and Point & Shoot Cameras) extracted from Amazon.com demonstrate the effectiveness of incorporating feature selection techniques for aspect selection in recommendation task. © Springer International Publishing Switzerland 2015.
URIhttp://hdl.handle.net/10261/130426
DOI10.1007/978-3-319-24586-7_5
Identificadoresdoi: 10.1007/978-3-319-24586-7_5
issn: 03029743
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ICCBR2015_LNCS9343,pp.60-72.pdf577,42 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.