English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/130341
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorHoshino, M.-
dc.contributor.authorLimão-Vieira, P.-
dc.contributor.authorSuga, A.-
dc.contributor.authorKato, H.-
dc.contributor.authorFerreira Da Silva, F.-
dc.contributor.authorBlanco, F.-
dc.contributor.authorGarcía, Gustavo-
dc.contributor.authorTanaka, H.-
dc.identifierdoi: 10.1063/1.4926539-
dc.identifierissn: 0021-9606-
dc.identifier.citationJournal of Chemical Physics 143: 024313 (2015)-
dc.description11 págs.; 6 figs.; 3 tabs.-
dc.description.abstract© 2015 AIP Publishing LLC. Absolute differential cross sections (DCSs) for electron interaction with BF3 molecules have been measured in the impact energy range of 1.5–200 eV and recorded over a scattering angle range of 15°–150°. These angular distributions have been normalized by reference to the elastic DCSs of the He atom and integrated by employing a modified phase shift analysis procedure to generate integral cross sections (ICSs) and momentum transfer cross sections (MTCSs). The calculations of DCSs and ICSs have been carried out using an independent atom model under the screening corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found to agree well with the results of IAM-SCAR calculation above 20 eV, and also with a recent Schwinger multichannel calculation below 30 eV. Furthermore, in the comparison with the XF3 (X = B, C, N, and CH) molecules, the elastic DCSs reveal a similar angular distribution which are approximately equal in magnitude from 30 to 200 eV. This feature suggests that the elastic scattering is dominated virtually by the 3-outer fluorine atoms surrounding the XF3 molecules. The vibrational DCSs have also been obtained in the energy range of 1.5–15 eV and vibrational analysis based on the angular correlation theory has been carried out to explain the nature of the shape resonances. Limited experiments on vibrational inelastic scattering confirmed the existence of a shape resonance with a peak at 3.8 eV, which is also observed in the vibrational ICS. Finally, the estimated elastic ICSs, MTCSs, as well as total cross sections are compared with the previous cross section data available.-
dc.description.sponsorshipThis work was conducted under the support of the Japanese Ministry of Education, Sport, Culture, and Technology. F.F.S. acknowledges the Portuguese Foundation for Science and Technology (FCT-MEC) for post-doctoral No. SFRH/BPD/68979/2010 grant, and together with PL-V the Nos. UID/FIS/00068/2013 and PTDC/FIS-ATO/1832/2012 grants through FCT-MEC. PL-V also acknowledges his Visiting Professor position at Sophia University, Tokyo, Japan. F.B. and G.G. acknowledge the partial financial support from the Spanish Ministerio de Economia y Competitivided (Project No. FIS 2012-31230).-
dc.publisherAmerican Institute of Physics-
dc.relationMINECO/FIS 2012-31230-
dc.relation.isversionofPublisher's version-
dc.titleCrossed-beam experiment for the scattering of low- and intermediate-energy electrons from BF3: A comparative study with XF3 (X = C, N, and CH) molecules-
dc.description.versionPeer Reviewed-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderJapanese Government-
dc.contributor.funderFundação para a Ciência e a Tecnologia (Portugal)-
Appears in Collections:(CFMAC-IFF) Artículos
Files in This Item:
File Description SizeFormat 
Crossed.pdf1,49 MBAdobe PDFThumbnail
Show simple item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.