English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/129921
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Tracking and following pedestrian trajectories, an approach for autonomous surveillance of critical infrastructures

AutorGarzón, Mario ; Barrientos, Antonio ; Cerro, Jaime del; Alacid, Andrés; Fotiadis, Efstathios P. ; Rodríguez-Canosa, Gonzalo R.; Wang, Bang-Chen
Palabras claveField robotics
Autonomous robots
Image processing
Navigation
Fecha de publicación2015
EditorEmerald Group Publishing
CitaciónIndustrial Robot 42: 429- 440 (2015)
Resumen© Emerald Group Publishing Limited [ISSN 0143-991X]. Purpose This paper aims to present a system that is fully capable of addressing the issue of detection, tracking and following pedestrians, which is a very challenging task, especially when it is considered for using in large outdoors infrastructures. Three modules, detection, tracking and following, are integrated and tested over long distances in semi-structured scenarios, where static or dynamic obstacles, including other pedestrians, can be found. Design/methodology/approach The detection is based on the probabilistic fusion of a laser scanner and a camera. The tracking module pairs observations with previously detected targets by using Kalman Filters and a Mahalanobis-distance. The following module allows to safely pursue the target by using a well-defined navigation scheme. Findings The system can track pedestrians from static position to 3.46 m/s (running). It handles occlusions, crossings or miss-detections, keeping track of the position even if the pedestrian is only detected in 55/per cent of the observations. Moreover, it autonomously selects and follows a target at a maximum speed of 1.46 m/s. Originality/value The main novelty of this study is the integration of the three algorithms in a fully operational system, tested in real outdoor scenarios. Furthermore, the addition of labelling to the detection algorithm allows using the full range of a single sensor while preserving the high performance of a combined detection. False-positives rate is reduced by handling the uncertainty level when pairing observations. The inclusion of pedestrian speed in the model speeds up and simplifies tracking process. Finally, the most suitable target is automatically selected by a scoring system.
Versión del editor10.1108/IR-02-2015-0037
URIhttp://hdl.handle.net/10261/129921
DOI10.1108/IR-02-2015-0037
ISSN0143-991X
E-ISSN1578-1968
Aparece en las colecciones: (CAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.