English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/129913
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Self-organizing techniques to improve the decentralized multi-task distribution in multi-robot systems

AutorLope, Javier de ; Maravall, Darío ; Quiñonez, Yadira
Palabras claveStochastic learning automata
Multi-task distribution
Ant colony optimization
Self-coordination of multiple robots
Bio-inspired threshold models
Multi-robot systems
Fecha de publicación2015
EditorElsevier
CitaciónNeurocomputing 163: 47- 55 (2015)
Resumen© 2015 Elsevier B.V. This paper focuses on the general problem of coordinating multiple robots, in particular, addresses the problem of the distribution of heterogeneous multi-task in a robust and efficient manner. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We take into account a specifically distributed or decentralized approach as we are particularly interested in experimenting with truly autonomous and decentralized techniques in which the robots themselves are responsible for choosing a particular task in an autonomous and individual way. Under this approach we can speak of multi-task selection instead of multi-task assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using different approaches by applying the response threshold models inspired by division of labor in social insects, the application of the reinforcement learning algorithm based on learning automata theory and ant colony optimization-based deterministic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot's error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.
Versión del editorhttp://dx.doi.org/10.1016/j.neucom.2014.08.094
URIhttp://hdl.handle.net/10261/129913
DOI10.1016/j.neucom.2014.08.094
ISSN1872-8286
Aparece en las colecciones: (CAR) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.